Mappings by parallel normals preserving principal directions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Invariants and Principal Directions from 3D Points and Normals

A new technique for computing the differential invariants of a surface from 3D sample points and normals. It is based on a new conformal geometric approach to computing shape invariants directly from the Gauss map. In the current implementation we compute the mean curvature, the Gauss curvature, and the principal curvature axes at 3D points reconstructed by area-based stereo. The differential i...

متن کامل

- Inner Product Preserving Mappings

A mapping f : M → N between Hilbert C∗-modules approximately preserves the inner product if ‖〈f(x), f(y)〉 − 〈x, y〉‖ ≤ φ(x, y), for an appropriate control function φ(x, y) and all x, y ∈ M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert C∗modules on more general restricted domains. In particular, we investigate some asympt...

متن کامل

Unit-circle-preserving mappings

If f is an isometry, then every distance r > 0 is conserved by f , and vice versa. We can now raise a question whether each mapping that preserves certain distances is an isometry. Indeed, Aleksandrov [1] had raised a question whether a mapping f : X → X preserving a distance r > 0 is an isometry, which is now known to us as the Aleksandrov problem. Without loss of generality, we may assume r =...

متن کامل

Mappings preserving regular hexahedrons

for all x, y ∈ X . A distance r > 0 is said to be preserved (conservative) by a mapping f : X → Y if ‖ f (x)− f (y)‖ = r for all x, y ∈ X with ‖x− y‖ = r. If f is an isometry, then every distance r > 0 is conservative by f , and conversely. We can now raise a question whether each mapping that preserves certain distances is an isometry. Indeed, Aleksandrov [1] had raised a question whether a ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1974

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1974.54.191